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We consider the Hopfield model with M(N)= r patterns, where N is the 
number of neurons. We show that if at is sufficiently small and the temperature 
sufficiently low, then there exist disjoint Gibbs states for each of the stored 
patterns, almost surely with respect to the distribution of the random patterns. 
This solves a problem left open in previous work. The key new ingredient is a 
self-averaging result on the free energy functional. This result has considerable 
additional interest and some consequences are discussed. A similar result for the 
free energy of the Sherrington-Kirkpatrick model is also given. 
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1. I N T R O D U C T I O N  

Recently, considerable progress has been made towards a rigorous under-  
s tanding of some of the main  thermodynamic properties of the so-caUed 
Hopfield model, tS) This model had been introduced first by Figotin and 
Pastur  t6'7) as a simple soluble model of a spin glass, but  has enjoyed, 
after its reinterpretat ion as a model for an autoassociative memory by 
Hopfield, (8~ an enormous success. Notably,  the application of the replica 

method,  familiar to theoretical physicists for many  years from work in 
particular on the Sherr ington-Kirkpat r ick  model ~3" ~0) by Amit et al., ~ t~ has 
allowed for the first time an analytical reproduction of earlier findings from 
numerical  s imu~tions .  In  spite of the success of this method, it is, we hope 
not  only from the point  of view of mathematics,  somewhat unsatisfactory, 
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as it involves a number  of  ad hoc procedures which cannot,  up to now, be 
interpreted within the f ramework of rigorous mathematics.  Moreover ,  this 
method computes  various quantities in a fictitious replica space which 
makes  the physical interpretation of what  is going on somewhat  awkward;  
in particular,  this method can at best compute  certain quenched averages 
of  correlations functions, but is intrinsically inadequate to obtain results 
that are typically (in the sense of  the probabilistic term almost sure) true in 
a given fixed realization of the disorder. 

Over  the last year, however,  some mathematical ly  rigorous results on 
this model  have been obtained (for a summary  see, e.g., ref. 2), albeit under  
fairly stringent conditions on the parameters  of  the model,  notably the 
ratio a(N) of the number  M(N) of stored patterns to the system size N. 
Under  the condition that  this ratio tends to zero as N tends to infinity, the 
complete set of  all limiting Gibbs measures could be constructed. 14) While 
these results are already quite difficult to obtain,  it is clear that  the more  
interesting things should happen  in a regime where M(N)  is propor t ional  
to N. In ref. 4 some fairly weak results concerning the Gibbs  states could 
be proven, but they fell somewhat  short  of  what  one would like to have. 
In particular,  no procedure that  would even assure the existence of limiting 
Gibbs measures in this situation had been found. Beyond that, there are 
only very few results: One, due to Shcherbina and Tirozzi, (t4) asserts that  
the free energy of the model is self-averaging in the sense that  its variance 
is of the order of the inverse system size. Another  result, due to Pastur  
et al., (~2~ states that  the mean-field equations obtained from the replica trick 
(without replica symmetry  breaking) are exact, provided the Edwards -  
Anderson order parameter  is self-averaging. Unfortunately,  only if a = 0 or 
at high temperatures is it possible to verify this assumption.  

In this paper  we prove, for the first time, the existence of limiting 
Gibbs measures associated with any of the stored patterns or finite, albeit 
very small, a. We rest heavily on the results from ref. 4, but add, as we shall 
see, a crucial new ingredient: this is an improved self-averaging estimate on 
the large-deviation rate function (free energy functional). Although in its 
derivation we use many  of the ideas from ref. 11, our estimates are, and for 
our purposes have to be, much sharper. Related, but different bounds have 
also been proven in ref. 5. 

Before we explain our results in detail, let us give precise definitions of  
the model  and the quantities we will deal with. We also refer to ref. 4 for 
more  details. 

Let us describe the Hopfield model. We set A = { 1 ..... N} and 5aa = 
{ - 1, 1} N the space of functions a: A ~ { - 1, 1}. We call a a spin con- 

figuration on A. We shall write 5 a = { - 1, 1 } ~ for the space of half-infinite 
sequences equipped with the product  topology of discrete topology on 
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{ - 1 ,  1 }. We denote by ~A and ~ the corresponding Borel sigma algebras. 
We will define a random Hamiltonian function on the spaces 6aA as follows. 
Let (12,~-, P) be an abstract probability space. Let ~ = { ~ } i , ~ , ~  be a 
two-parameter family of independent, identically distributed random vari- 
ables on this space such that P ( ~ =  1)= F(~,". = - 1 ) =  1/2. The Hopfield 
Hamiltonian on Se A is then given by 

1 M(N) 

H.,v[~](a)-- -- 2-"N ~ )-" #f[co] #~:[c.o] aiaj (l.1) 
(i,j) e A x A  ,u=l  

For r/~ N, we denote by fr the random probability measure 
on (rPA, ~(6eA)) that assigns to each a ~  the mass 

1 {- f lHN[og](a)+flh  ~" ~7[o9] a;.} ~'P'hE m ]( a) = Z~. p. h[r exp i~A (1.2) 

where Z~v,p,h[~o ] is a normalizing factor usually called the partition func- 
tion. The reason for the introduction of these measure and the magnetic 
field term h will become apparent later; for a more detailed discussion on 
the definition and construction of limiting Gibbs measures in mean-field 
models, see ref. 4. 

The quantity 

f~,p.h[og] = - - f l~ ln  Z~u.p,h[co] (1.3) 

is called the free energy, f#~,p.h[og] is called a finite-volume Gibbs state with 
magnetic -field. Note that the Hamiltonian can be written in terms of the 
overlap parameters 

in the form 

m~vEco](a) = ~ r E co ] o';, 
i = l  

/ ~ - -  1 ..... M ( 1 . 4 )  

N M 

This suggests that we introduce the distribution ~ .p ,  hEco] of these 
parameters under the Gibbs measures, i.e., 

~.~-.p,h[o9 ] (m) = fg~,p.hEco] ({ mN(a) = m} ) (1.6) 

The measures .~Tv, p.h[CO](m) on (R M, ~(RM)) are called induced measures. 
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The following notat ion is taken from ref. 4. For  6 > 0, we write a(6, fl) 
for the largest solution of the equation 

6a = tanh(fla) (1.7) 

We denote by II" 112 the 12-norm on R N. Given that l im,vr~[M(N)/N] =o~, 
we set, for fixed fl, for v s I~, and s ~ { - 1, + 1 }, 

B~v")= {x ~ R~l l l x -  sa( l - Z x/~, fl) eVll2 <~ p} (1.8) 

where e" denotes the vth unit vector in R ~. With this notat ion we can 
announce the following theorem. 

T h e o r e m  1. There exists ~o > 0 such that if l im[M(N)/N] = ~, with 

~< ao, then, for all fl > 1 + 3 x/~, if p2 > C[a( 1 - 2 x//~, fl)] 3/2 0,1/8 ]In ct 11/4, 
for almost all 09, 

lim lira .~,p,h[-co](Btp ~'+'1) = 1 (1.9) 
h,t0 N]'~z 

In ref. 4 it had been proven that, under the same hypothesis, 

lim -~u,p,h=o[oo](Bp)= 1 (1.10) 
NTo~ 

where 

B p ~  U B~ v's) (1.11) 
(v ,s )e~•  {--1,+1} 

is the union of all the balls appearing in Theorem 1. The crucial difference 
between that result and our new one is that this time we can select different 
limits by adding an arbitrarily small bias in terms of the magnetic field 
aligned to one of the patterns. To appreciate the difference between these 
results, notice that from Theorem 1 it follows in particular that the finite- 
dimensional marginal distributions possess limit points that clearly dis- 
tinguish the selected pattern; to be precise, let I c  ~ denote some finite set 
of positive integers, let R ~ denote the finite-dimensional space generated by 
the vectors #',  with p E/,  and let H~ be the orthogonal  projector from 
R Mtm (for any N such that I c  { 1,..., M(N)} ) onto R y. We can introduce 
the marginal measures on R z as 

q,I -~N, pj,[co] --.~,.p.h[C0] o17) -1 (1.12) 

Then, (1.9) implies in particular that 

lim lim e.z t~.+ ~N,#,h[co](HzB p a)) = 1 (1.13) 
hlO NT~ 
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Therefore, if r/~/,  the limiting marginal is concentrated on an III-dimen- 
sional ball around the vector e ~. If we had only (1.10), we would get 
instead of (1.13) only 

lim lim -~tp.hECO](HtB p) = 1 (1.14) 
h,!.0 NToo 

from which it is not possible to conclude that there exists any finite / for 
which the corresponding marginal distribution is not  concentrated on a ball 
around the origin! 

R e m a r k .  In the discussion above we have supposed, of course, that 
the balls Btfl "s) are disjoint. As we have already pointed out in ref. 4, since 
a(fl,  ~ ) ~  ( f l - g )  for ( f l - ~ )  small, Theorem 1 allows us to choose p such 
that this is the case as long as f l>  1/(1 -co f l /4 ) .  This should be compared 
with the predictions of Amit et  alJ  ~ that the "Mattis phase ''3 is bounded by 
a line f l=  1/(1 - co~  1/2) [see the curve T =  Tc(ct) in Fig. 2 and the last equa- 
tion in Section 5 therein]. The exponent I/4 in our bound is in fact due to 
estimates that are most likely not optimal and should thus not be taken 
too seriously. 

Let us explain the main issue in the proof of Theorem 1. In ref. 4 it has 
been shown that (with probability tending rapidly to 1 as NT oo) 

.~,)p,h[ col (B~) ~< e -oN (1.15) 

for some positive constant c, provided that p is as large as demanded. 
Thus, for fixed large N, almost all of the total mass is concentrated on the 
union of the 2M(N) balls B~ ~''~. The question is then how this mass is 
distributed over the individual balls: We set 

1 
F~,~.s~ - ~ "__ ~,t s) u.p.p- N ln  -~u.p.h=O[co](Bp" ) (1.16) 

Clearly, the measure is sharply concentrated on the ball for which this 
quantity takes its minimal value. If for h = 0 for different ~/these quantities 
differ only by terms that tend to zero as N Tm, then, by adding an 
arbitrarily small magnetic field aligned on one of the patterns, the corre- 
sponding F t~'sign h) can be tuned to be the minimal value and the measure 

We use this name for the parameter region in which, in the words of Amit et al., "the 
retrieval FM states are global minima." Note that these are, again in their wording, "Mattis- 
like, but in the case of finite ct, rn is less than 1 even at T =  0." Note also that in this case, 
the "random overlaps (with the other patterns) will be of order O( 1/x/~),"  which is in agree- 
ment with our results. We prefer thus the name "Mattis phase" for this region, rather than 
"ferromagnetic" or "retrieval phase," which may be misleading. 
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is concentrated on the corresponding ball. In ref. 4 it was proven that these 
differences could only be of the order of M/N, which is sufficient in the case 
limN t o~ M(N)/N = 0, but useless if limN; ~ M(N)/N = oc > O. 

Here we will show that the quantities ~.c,.s) satisfy a strong self- ~ N,/1,p 
averaging condition. Note that they can be naturally regarded as "local free 
energies," associated with the particular state labeled (r/, s). The crucial 
estimate is contained in the following 

Proposition 1.1. Assume that ~ and p satisfy the hypothesis of 
Theorem 1. Then, for all n < oo there exists % < oo such that for all r >i z,, 
and for N large enough, 

P[sup IF~:~I., ,-  ":~'<" " ,/2] N - , , +  , ~.,v,p,p, >~z(ln N) 3/2 N -  ~< (1.17) 
(Pl, s) 

The proof of this proposition will be given in Section 2. Since (1.15) 
has already been obtained in ref, 4, the proof of Theorem 1, assuming 
Proposition 1.1, is actually easy. We will give it here: 

Proof  o f  Theorem 1. Let us introduce the (nonnormalized) restricted 
partition functions 

Z~,p,h[r-.o](B~""~') =--~ +~+.~N (exp I --flHN(O')+ ]3h ~+A +']a,] l 

x + {",,N++> --,~"~<a)"2 <~ P} ( 1.18 ) 

Notice first that these quantities are easily compared to the corresponding 
ones in zero magnetic field (we consider only the case h positive): 

Z" Fco'ltBt"'+l)~>~ePm'(=tf~ rcoqtB("" +1)~ N, fl, hL J'~ p I N,  fl, h ffi 0 L  3~  p / (1.19) 

and for (ll, S)VL(q, +1)  

( s )  Z"u,p,h[CO](B~ u" ) <<. e+am'PZN, p,h=o[Co](B~"')) (1.20) 

Now by Proposition 1.1, with probability greater than, say, 1 - N  -m, all of 
the quantities ZN, p,h=0[Co](B~"'+1)) satisfy 

exp{ --flN~_FN, zm -- rll [N(ln N) 3 ] ,/2} 

ZN, p,h = o[ O~ ] (B~ "'+~) 

ZN, p,,,=o[0O] 

exp{ - f l N ~ F N , # , ;  + "ell [ N(ln N) 3 ] t/2} (1.21) 
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Here we have written EFN, p,p instead of EF w's) to make  manifest that, by ~r.#,p 
symmetry,  these averaged quantities do not, of  course, depend on the 
indices (p, s) if the magnetic  field is zero. Obviously,  again with probabil i ty 
greater than 1 - N -  ~o, 

-%,p,,,E~](~ "'+'~) 
Z ~ (BC,.+~ N, fl, h p ) 

m 
q c Z'lJv.p.h,t B('I" + I h + E(.'..~) * I.r + u  ' l) Z~.p.h(B~U"))+ZN.p.h(Bp) 

Lr 1 + 2Me - - p h N [ ~ ( / / )  - -  2 p ]  + 2(11 [ N ( I n  N ) 3 ]  I/'2 _1_ e - CNIj  - I ~1 "t~z'll."'F"~'~ >/ 

where (1.15) and (1.19)-(1.21) were used to obtain the second line of  
(1.22). F r o m  here Theorem 1 follows by an application of the first Borel-  
Cantelli lemma. II 

In the next section we derive self-averaging properties of large- 
deviation rate functions and prove in particular Proposi t ion 1.1. The actual 
technical estimates that  will be used in the p roof  are even more  consequen- 
tial and in a final Section 3 we discuss some of these as well as open 
problems. 

2. S E L F - A V E R A G I N G  OF RATE F U N C T I O N S  

The main new technical result of the present paper  is a refined self- 
averaging estimate on the large-deviation rate function. Let us set, for 
r~ E R M~N), 

1 
FN, p..(rh) = - f l - '  ~. (-~N,p[ IlmN(rr) - r~l[2 ~<p]) (2.1) 

For  technical reasons that  will become clear later, we will not consider 
directly FN.p.p(rh), but a slightly modified quanti ty in which the charac- 
teristic function ~l,,,.,-,~,2~p} is replaced by a smooth  version of this 
function. We let Xp,6(x) be a family of  infinitely differentiable functions 
satisfying: 

(1) Xp,~(x~>~O. 

(2) I(d/dx)zp.,~(x)[ ~<2d i-1. 

(3) "]{ixl<~p} ~ X p , ~ ( X ) ~ ' ] l l x l < ~ p + a  } . 

(4) in Xp,,~(x) is a concave function of x (where we use the convention 
l n O -  - 0 o ) .  
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Let us now define 

2N, p,p,a(r~) - ~. e -PH~(~)zp ,~( l lmN(a)-~l l2)  (2.2) 

and 

I - 
Fu ,  p,p(tfi) - -- ~-~ In ZN, p,p(r~) (2.3) 

(We set h - - 0  in this section in order not to overload the notations. The 
reader can convince herself or himself that all results apply to the case with 
finite h with some minimal modifications.) 

We will see that the parameter 5 can be chosen as 6 = O(1/Np) ,  so 
that this modification makes no difference whatsoever. Namely we have the 
following result. 

kemma 2.1. Assume that p is as in Theorem 1, and f i < a ( f l ) - 2 p .  
Then, for all co for which (1.15) holds, 

I 
[FN, p,p(Sa(fl) e ~) _ p(,1_ N, ff, ~ --N (2.4) 

Proof.  We have that 

[~'N.p,p(Sa(fl) e") - ~'(q's~ <~ In (2.5) ~t N ,  fl, p i n ( q  s)  \ZN, fl[~'p" )/ 

For 5 ~< a ( f l ) -  2p, the annulus between p and p + 5 is contained in B~ and 
thus the numerator differs only by an exponentially small term from the 
denominator in (2.5), if p is chosen large enough so that the Gibbs 
measures are concentrated o n  Bp. This can be proven by some slight 
modifications of the estimates in ref. 4, in particular the proof of part (ii) 
of Lemma 4.2 in that paper. We will not give the details here. | 

R e m a r k .  Of course the analog of Lemma 2.1 holds in many dif- 
ferent situations. The crucial point is that we should consider the mass of 
a region in which much of the total mass is concentrated. 

Remark. The restriction of the statement of the lemma to the sub- 
space of co's on which we can prove (1.10) is of course irrelevant, since it is 
only there that the conclusion of Theorem 1 holds. We will use Lemma 2.1 
in the course of this section, but since the mass of the complement of this 
subspace is much smaller than all the probabilities we estimate here, this will 
make no difference for our estimates, and we will not make this explicit, to 
avoid overloading our notations. 
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The main technical result of this section is the following proposition. 

Proposition 2.2. Assume that lim[M(N)/N] = ~  and p are as in 
Theorem 1, and let n~ = +_a(fl) e u. Then, for all n < on there exists r ,  < on 
such that for all r/> 3, and for N large enough, 

F[IFN, a,p(rh)--F-PN, a,p(r~)I>~r(lnN)3/2N-]/z]<<,N -" (2.6) 

Proposition 1.1 from the last section is of course an immediate 
corollary of this proposition together with Lemma 2.1. Thus all that is left 
is to prove Proposition 2.2. 

Proof of Proposition 2.2. L e t  us set  f N ( r ~ )  - -  NFN, a,p(r~). 
We now introduce the decreasing sequence of sigma-algebras ~ that 

are generated by the random variables r and the corresponding s i ) i > ~ k  

martingale difference sequence 

f~)(r~) - E[fN(r~) I ~ ]  -- n:[ fN(r~)I o% + , ] (2.7) 

Notice that we have the identity 

N 

fN(th) -- ~_fu(th) = ~. f~)(rh) (2.8) 
k=l 

Let us recall that this construction was first introduced by Yurinskii (~5) and 
employed in the context of spin-glasses and the Hopfield model by Pastur, 
Shcherbina, and Tirozzi. I1a't4~ 

Our aim is to use an exponential Markov inequality for martingales. 
This requires in particular bounds on the conditional Laplace transforms of 
the martingale differences. Namely, we clearly have that 

<~2infexp(-l t lNz)  E e x p { t , ~  f~)(~)  I 

= 2 inf e x p ( -  Itl Nz)E[ E[. . .  E[exp{ tf~)(r~)} I ~ ]  
t ~ R  

x exp{tf~)(~)} 1 ~ ]  ' "  exp{tf%N)(r~)} ]~N+I] (2.9) 

Therefore, ~f "we can show that, for some function s 
in ~:[exp{tf~)(m)} I ~ + , ]  ~<-~(k)(t), uniformly in ~ + , ,  then we obtain 
that 

[r 1 I ] P f~)(rh) >~Nz ~<2infexp - I t l N z +  *~(k)(t) (2.10) 
I t ~ R  k =  I 
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To bound the conditional Laplace transforms, we introduce first, for 
u ~ [0 ,  1] ,  the M-dimensional vectors 

m ~ ' ( a , u ) - l ( ~  ~,a ,+ u~kak) (2.11) 

i # k  

and define 

N i im~)(a,  u)ll 2 (2.12) HT(~ ")= - 2  

Note that /-)~)(a, 1 )=HN(a) ,  while B~)(a ,  0) does not depend on ~k. 
Naturally, we set 

1 t Ilm~l(a, u) -rhll_,) (2.13) 
a e S/'N 

and finally 

f~)(t~, u) = - f l - t ( l n  Z~)(r~, u) - I n  Z~'(t~,  0)) (2.14) 

Since for the remainder of the proof, r~ as well as N will be fixed values, 
to simplify our notations we will write fk(u)---f~l(r~, u). Notice that 

f~)(r~) = E[fk(1) I ~ ]  -- n:[fk(1) I ~ +, ] (2.15) 

TO bound the Laplace transform, we use that, for all x r R, 

e x ~< 1 + x + �89 Ixl (2.16) 

so that 

E[e'~'&'~)[~k+l] <~ l + �89 e@~'('~)ll~+t ] (2.17) 

Our strategy will be to use a rather poor uniform bound on jT~)(rh) in the 
exponent, but to prove a better estimate on the remaining conditioned 
expectation of the square. A simple computation shows that 

f'k(u) = Rk.= \ ~  ,.k~,k,,,N ,~', u) 

1 x',,,5(llm~%, u)-r~ll=) V (m~)'U(a' u)--rh") ~ak'] (2.18) / 
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where 8k,~ denotes the expectation w.r.t, the probability measure 

1 
Z~(r~, u)ZP'a(llm~(a' u)-'~ll =) e -a'q~'~`'"~ da (2.19) 

We see that f~,(0)= 0, and thus, asfk(0) = 0 andfk(u) is a concave function 
of u, Ifk(1)l ~< If~.(1)l. Now 

1 X'pa(llmN(a)--r~ll,_) m~v(a)-ff~" ~ a k  
~k., f l - - N ~ ~ ~  IlmN(e)--mll2 

" Z (,~,s) ) ~<sup IImN(a)--mlll 2_.}___( N,p(Bp+,0_ 
iimN(a)_f, llEflaN \ ZN.a(B~m ) 1 

flaN 

where we have used Lemma 2.1 
bound 

(2.20) 

for the last inequality. Thus, using the 

r ~ ~ gk m +v/-M(P+a)~<IIr~II,+v/-M(P+ a) 
.a 

we get 

(2.21) 

( 2) 
I f ; (  1)1 ~< IIr~ll, + ~ (P + a) + ~ (2.22) 

We will now choose 3 = 2/flNp, so that we get effectively the bound 

If~-(1)l ~ IIr~ll, + 2 x / ~ p  (2.23) 

Using this bound to estimate 37~(n~) and inserting the result in (2.17), we 
get that 

IF[eY~k"(a'~]o~+,] ~< 1 + �89 E'l~"'~'lh +='f-~P~IF[(jT~I(r~))2I~.+, ] (2.24) 

Of course we could also use (2.23) to bound the expectation of the square 
in (2.24), but due to the presence of the ~ in that bound, this would not 
be very useful. 
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We will now use (2.15) to write (recall that ~k are defined in such a 
way that ~ = ~ k  + I ) 

EE(f~)(a0)21 ~k+, ]  ---- EE{~Efk(1)-- E [ A ( 1 ) I ~ + , ]  I~k]}21~k+,] 

~< ~[IF[ { f k ( 1 ) -  n:Efk(1)I ~ + ,  ] } 21 ~ ]  I o~+,  ] 

= lF[ { f k ( 1 ) - - I F [ f k ( 1 ) l , ~  + l]} 2[ ,~  + l] 

= aZE(fk(1))2 I ~ + , 3  -- { ~[f , (1)I ,~ .+ 13} 2 

< ~ - [ ( f k ( 1 ) ) 2 l ~ + ~ ] 4 E [ ( f ' k ( 1 ) ) 2 ] ~ + l  ] (2.25) 

Let us use the fact that (a+b)2<<.2a2+2b 2 and (2.18) to see that 

+2 ~Vkl (lx; 'J(IImN(O')-/5~/ll2) (mlN(O')--t~'u) ~kO'k 
' \ f lNxp.a( l lmN(a)--rhl lz)IImN(a)--rhl l2  

(2.26) 

Using the Schwarz inequality, we get from this that 

fz t 2 (f~-(1))= ~< 2r ~akm~v(O) 

+2E[d,kt  ( 1  Zk~(llmN(a)-r~ll2)'~ = 
'\flNx,.o(llmN(cr) n~ 112),/ 

x~k. ' {2, ,~,(m~v(a)-rh")} 2 o~ ~] (2.27) 
IImN(a) --r~ll, 2 ~'k+ 

The expectation of;('/)( is bounded using Lemma 2.1 as in (2.20) and just 
gives a factor p2, with the previous choice of d. To deal with the first term, 
we use the following crucial trick: gk.] is in fact independent of k, and 
therefore the expectations conditioned on ~ +, are the same if the index k 
inside it is replaced by any of the indices j e { 1 ..... k}. This allows us to 
derive from (2.27) 

nz[(f~(1))2 I,~k+ ~] 

1 k 

+ 2P z~- gk.x ~: IlmN(a)--fftl[ 2 ~ + l  j= l  
(2.28) 
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Let us define the random M x M matrices B r with elements 

B(k) ~ u v ~ 1 
~,~ = ~ ,  {j{j  (2.29) 

j = l  

Note that these matrices are measurable w.r.t, the sigma algebra ~-\~,~ +t. 
We will write bk = liB~k~l[ for the norms of these matrices. 

We can write (2.28) in the form 

E[ (f},(1))2 I ,~+ ] ] ~< 2El gl,k((m~v(0"), B(k)mN(a)))I~-+X ] 

+ 2p2[E [ ~l'k((mN(~)--m)'B(k'(mN(Cr)--m))ll-~N(~))C-~-~2 ~ + ' 1  

(2.30) 

Here (., .) denotes the scalar product in R M. The second summand is 
immediately seen to be bounded by 2p2[F_bk, while for the first we write 

2E[ g,,k((mN(0"), B(k )m N( a ) ) ) l ~ + , ] 

=2E ~ ~.~;N~ k ( ( m ~ , ( a ) - r ~ " ) ( m ~ ( ~ ) - r ~ ) ) l ~ + ~  
~ ,  V ~ 

I 1 bt u u - -  ~ / . t  ~ v  OX" +4IF ~ y, ~j~jd'l.k((mN(a ) m )m )[~k+l 
L l t ,  v j = l  

+ 2E _~ y' "u"v -u - ,  
. =  / l , v  j 1 

= 2E[ gLk((mN(a) -- rh), B{k)(m~(er) -- rh))I ~176 ] ] 

+ 4El gLk((mN(0" ) --rh), B(k)rh)I ~ + t] 

+ 2E ~.r~ ~' 
j i 

~< [ 2(p + j)z + 4 Ilrh II(P + a)] ":b~ + 2 IIr~ll 2 2 (2.31) 

where for the last inequality we have used the Schwarz inequality and the 
fact that B r is measurable with respect to ~ - \ ~ + t  to replace the condi- 
tional expectation by the expectation. 

Collecting our bounds and inserting them into (2.24), we have 
(ignoring the difference between p and p + 6) 

~:[ e'~'('~) I ~ + ~] 

<<. 1 + �89 2 iti(lir~iix + 2 ,/-~*')[ 2 IIn~ II 2 2 + (2P z + 4 I1,~11 ,o) Ebk'l 

~< exp{�89 11~1122+ (2p2 + 4  I1~11 P)Ebk]} (2.32) 

822/79/1-2-27 
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This is a uniform bound o n  .~cp(k)(t) SO that 

~exp(t ~ jT~)(tfi)} 
k = l  

<~ exp ( l l2e21tl( llr~lh + 2 v/-M P) [ N2 lll~ll 2 + ( 2p 2 

Bovier e t  al .  

All we still need is a bound on the expectation of the b k. But this follows 
easily from the estimates on the norms of such matrices proven, for 
instance, in refs. 14 and 2. We will use the bounds on the traces of powers 
of such matrices proven in ref. 2 to deduce 

I . emma 2.2. Let B (k~ denote the M x M  matrices with elements 
defined in (2.29). Then 

( M /M\  1/2 
~2-~- + 2e ~ -~--) if k<.M 

~: IlBIk)l[ ~< ) /MNU 2 (2.34) 
~2 + 2e ~--~-) if k>~M 

From this lemma it follows that 

N M N 

~. Ebk<~2 ~, M/k+Ze ~, (M/k)~/2+Z(N-M) 
k = l  k = l  k = l  

<<, c[ M In M + N+ (M/N) 1/2] (2.35) 

for some numerical constant c. Using these estimates, we get 

Eexp t 2 f~)(n'7) 
k = l  

<~exp(~t2e2ltltllr~lll+2x/-MP)N[2llfflll2d-4C"p lift/l[ 22 

Let us remark that we will use this bound only for ~ with bounded 
/2-norm and for p and M/N much smaller than 1. Thus (2.36) takes on the 
simple form 

F_exp {tk~=lf~)(rh)} <~exp {ct2eC't'l'f~N(l + pM ln N)} (2.37) 

k = l  

(2.33) 
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for (new) constants c and c'. Equation (2.37) can now be used together 
with (2.9) to derive a variety of bounds by suitable choices of t. Note that 
the presence of the term e Itl ~ restricts the useful values of t essentially to 
the interval [0, M-1/2], so that in particular no exponential estimates can 
be obtained. But for our present purposes we will not need this. In fact, the 
most convenient bounds for us are derived by choosing t = n ( l n  N)/zN. 
This yields (we put M/N= oc) that 

P[  I fu(rh) - EfN(th)[/> Nz] 
{ (lnN)zn2(l+p~ } 

~< N - "  exp c z2 N Ne(MIN),a ~lv,a (2.38) 

If Z X/~  is sufficiently large, e.g., z x / ~  = r(ln N) 3/'-, then for arbitrary n, the 
argument of the exponential function converges to 0 as NT or. From this 
the statement of Proposition 2.1 follows immediately for the nonnormalized 
quantities fN(rh) (which, by looking at the proof of Theorem 1, is in fact all 
we would really need). The reader might worry whether the same estimate 
holds also for the logarithm of the normalizing factor, i.e., the free energy 
itself. We recall that in ref. 14 only the vanishing of the variance of the free 
energy was proven. To obtain our sharper estimates, we should in principle 
repeat our proof with rh = 0 and p = oo. Doing this naively, we would run 
into trouble. However, note that we can of course always write 

Zu, p = Z~, ~ + Z~./~ (2.39) 

where 

and 

1 Z~, p-~-; ~ e-Pnu(~)~{it,,N(,,),.,~<2) (2.40) 
o" ~ ogaN 

1 Z~,.a=2u ~ e-att~(')l{,,,N(,)L,>2) (2.41) 

But I lmN(a) l l~  ]IAII, where A is the N• matrix with elements Ao= 
N u /4 1/N) ~ , =  1 ~;~j- This matrix has obviously the same norm as the matrix 

B (N) defined above, so that the estimates on the norm of these random 
matrices from ref. 14 or ref. 2 can be used. It follows in particular that this 

. . . .  N i l 6  
norm Is less than two with probablhty at least 1 - e  . Therefore, 

P[Z~, a = 0]/> 1 - e  -to'/' (2.42) 
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Since on the other hand the deviation of In Z~,pEm] from its mean is 
easily shown to satisfy the bound (2.6), we obtain the statement of the 
proposition. | 

3. D ISCUSSION A N D  C O N C L U S I O N S  

The result on the strong self-averaging property of the rate function 
that is contained in Proposition 2.1 is quite interesting beyond the fact that 
it allows us to prove Theorem 1. Let us note that, curiously enough, 
although we have such strong estimates on the fluctuations of the local free 
energies about their mean, nothing is known concerning the convergence of 
the means themselves as N Too, as soon as ~ > 0. This is certainly quite 
curious, but, as we have seen, not necessarily very disturbing. 

The result stated in Proposition 1.1 reflects a very high degree of 
symmetry among the patterns. For ~ = 0, the free energy functional has its 
absolute minima very precisely at the points +_eUa(fl) (the "Mattis states") 
with the value fixed at that of the Curie-Weiss model. As ~ increases, the 
positions of these minima shift in a continuous, and probably somewhat 
random, fashion away from these points, but, surprisingly enough, the 
value of this function at all these minima remains strictly the same. Some- 
how, although the function changes randomly in a different way near each 
of the Mattis states, the profoundness of the ensuing minimal values is kept 
the same to an astonishing degree of precision. Note that this fact remains 
valid well beyond the value of ct for which we know that the absolute 
minima are near the Mattis states. This suggests that, if, as expected, the 
"ordered phase" of the Hopfield model disappears, this happens in such a 
way that for some very precise value of ~ (depending, however, on fl) all 
the minima near the Mattis states cease to be absolute minima, while some- 
where else the new absolute minima appear. This scenario is to be con- 
trasted with the other imaginable picture in which first a competition arises 
between the Mattis states in the course of which some remain absolute 
minima while others turn metastable. In such a scenario, which we can now 
exclude, the existence of limiting Gibbs states would in fact have been 
doubtful if not unlikely. 

It may be of interest in this context to make some remarks on the self- 
averaging properties of the free energy in the Sherrington-Kirkpatrick "3) 
model of a spin glass. We recall that the Hamiltonian of this model is given 
by 

1 N 
H~v(a) = - -  ~ Jutr,trj (3.1) 

~/N i<] 
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where {Jo'} ;</~ ~ • ~ is a family of independent Gaussian random variables 
with mean zero and variance one. Pastur and Shcherbina m~ have proven 
that in this model 

s 
E[(FN.p -- EFN.p) 2 ] < ~. (3.2) 

and that therefore the difference between the free energy and its mean tends 
to zero in probability as NT oo. Using the techniques of Section 2, it is 
actually very easy to improve this result and to shown that in fact the 
following holds. 

P r o p o s i t i o n  3.1. In the Sherrington-Kirkpatrick model, for all 
f l > 0  and for all oo>z~>0 

P[  IFN.~ -- EFN.pl >/z] <~ 2 exp( - N z  z) (3.3) 

Proof. The basic idea of the proof of this proposition is the same as 
the one used in the Hopfield model. However, to get the optimal constant 
in the exponent in (3.3) we use the following additional trick, which is 
specific for Gaussian Ju' Namely, we may represent the Gaussian variables 
Jo as sums of independent copies J,~ in the form 

1 r 
Jo "=----~ 2 J~ (3.4) 

x /Ku= ,  

for arbitrarily chosen K. Let us introduce an arbitrary enumeration of the 
KN(N-1) /2  independent random variables J,~ and write for them J(1), 
J(2) ..... J (KN(N-  1)/2). 

We denote by ~ the sigma algebra generated by the random variables 
{ J(m)} m~>k" 

With the same notations as in Section 2, just suppressing the ~,  this 
allows us to write that 

1 KN(N--  1 }/2 

FN.p--F-FN.p=~ ~., f ~ '  (3.5) 
k = l  

Thus we see that the exponential bound in Proposition 3.1 will follow from 
a suitable bound on the conditional Laplace transform of fiN k}. The analog 
of (2.12) is 

1 
B~)(o, u)- (KN),/2 ~ ]o.~,~j 

(i,j,l, } ~ (i(k),j(k),,u(k)) 

1 j~,~k} a (3.6) - -  ~l ~ i(k),j(k) i(k),j(k) 
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This yields that this time 

1 
f 'k(u) = (NK)  l/2 J (k)  ~.,,~ricklajck~ (3.7) 

Trivially, here 

Let us use this time that 

1 
If~(u)l ~ IJ(k)l (3.8) 

ritzy)-'-  

x2 ~_~ 
e"~< 1 + x + - ~ - +  e I~l (3.9) 

Therefore, using (2.16), we get 

t 2 
n:[e 'Y~g' l~+~]~<l+~-Er(  71k~2L JN  J ~,k+~j" 

[tl tiT(k) 3 I ] , (k l l [~+l  ] (3.10) -~- IgL L/ j v e Itl 

To bound the first expectation, we can proceed as in (2.25) and just note 
that by convexity, 

1 
Ifk(1)l ~< max(I f ; (0) l ,  If~.(1)l) ~ < ~  IJ(k)l 

t / ~ v ) " -  

Thus 

I (3.11)  ~:E(f~b21~+l] ~ K N  

For the second term we can be less careful and use just that, by (2.15), 

2 
If~l ~<2 Ifk(1)l ~ ~  IJ(k)l 

Thus 

n=[_ i f ~ q  3 el,i 17~k~l i ~ + 1 ] 8 ~ ( - ~ - ~  IE IJI 3 e I'1 iJi/~gN~m 

C e ct2/(KN) ~ < ~  (3.12) 
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for some universal numerical  constants  c, C. Thus we obtain 

p[ mv(N-nnk~ f ~ )  >~Nz] 

~< 2 ,~Rinf exp [ --Itl Nz + 
( N - -  1) t z + c ( N )  ]/2 It] 3 e""/(mv) 1 

<~ 2 exp [ - N  N--~ z2 + Cz3 (N) I/2e4"2/(xm I (3.13) 

Since (3.13) holds for arbi t rary K, this proves the proposit ion.  I 

R e m a r k .  Let us note that  Proposi t ion 3.1 can also be derived by 
applying a concentrat ion estimate that  is given, for instance, in ref. 9, p. 21, 
Eq. (1.6); as pointed out there, however,  the p roof  of  that  inequality (with 
the sharp constant)  employs more  sophisticated techniques of  stochastic 
calculus. Our  proof,  being fairly elementary,  may  thus still be useful. We 
thank  M. Talagrand for having brought  this to our  attention. 

Proposi t ion 3.1 implies in particular the almost  sure convergence to 
zero of FN, p -  ~'N,#' This does not imply the almost  sure convergence of 
the free energy, since it is not known that  the mean of the free energy 
converges below the critical tempera ture  f l - ]  = 1. 

It m a y  be surprising that  Proposi t ion 3.1 gives an estimate in the SK 
model  that  is much  sharper  than what  we get in the Hopfield model,  while 
its p roof  is considerably simpler. The crucial proper ty  responsible for this 
fact is the independence of the two-spin couplings, which does not hold in 
the Hopfield case. 
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